What are some common data flow operations in TensorFlow?

Common data flow operations in TensorFlow include:

  1. tf.constant: defining a constant tensor.
  2. tf.Variable: A tensor variable is defined.
  3. tf.placeholder: defines a placeholder tensor.
  4. tf.assign: assigning a value to a variable.
  5. tf.add: adding tensors together.
  6. tf.subtract: Subtracting tensors.
  7. tf.multiply: Multiplying tensors.
  8. tf.divide: dividing two tensors.
  9. tf.matmul: matrix multiplication.
  10. tf.reduce_sum: sum the tensor.
  11. tf.reduce_mean: Calculate the average value of a tensor.
  12. tf.nn.softmax: Perform a softmax operation on a tensor.
  13. tf.nn.relu: Applies the ReLU activation function to a tensor.
  14. tf.nn.sigmoid: applies the Sigmoid activation function to a tensor.
  15. tf.nn.dropout: applying the dropout operation to a tensor.
  16. tf.layers.dense: defines a fully connected layer.
  17. tf.nn.conv2d: defines a two-dimensional convolutional layer.
  18. tf.nn.max_pool: Defines a max pooling layer.
  19. tf.nn.rnn_cell: Defines a recurrent neural network unit.
  20. tf.nn.dynamic_rnn defines a dynamic RNN.
Leave a Reply 0

Your email address will not be published. Required fields are marked *


广告
Closing in 10 seconds
bannerAds