How to perform data augmentation in the PaddlePaddle framework?

Various data augmentation methods can be utilized in the PaddlePaddle framework through the paddle.vision.transforms module. Here are some commonly used data augmentation methods:

  1. Flip the image horizontally at random.
transform = transforms.Compose([
    transforms.RandomHorizontalFlip(),
    # 其他数据增强方法
])
  1. Randomly flip the input vertically.
transform = transforms.Compose([
    transforms.RandomVerticalFlip(),
    # 其他数据增强方法
])
  1. Randomly rotating
transform = transforms.Compose([
    transforms.RandomRotation(degrees=45),
    # 其他数据增强方法
])
  1. Randomly resizing and cropping in various sizes
transform = transforms.Compose([
    transforms.RandomResizedCrop(size=(224, 224)),
    # 其他数据增强方法
])
  1. Convert to tensor
transform = transforms.Compose([
    transforms.ToTensor(),
    # 其他数据增强方法
])

Combining these data augmentation methods together can create a data augmentation transform, which can then be used to enhance images during data loading. For example:

train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
train_loader = paddle.io.DataLoader(train_dataset, batch_size=32, shuffle=True)
Leave a Reply 0

Your email address will not be published. Required fields are marked *


广告
Closing in 10 seconds
bannerAds