How to quantize models in PyTorch?
In PyTorch, you can use the torch.quantization module to quantize models. The specific steps are as follows:
- Define the model and load pre-trained model parameters.
import torch
import torchvision.models as models
model = models.resnet18(pretrained=True)
model.eval()
- Develop a quantifiable model.
import torch.quantization
quantized_model = torch.quantization.quantize_dynamic(
model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8
)
- Evaluate the performance of quantitive models.
from torch.utils.data import DataLoader
import torchvision.datasets as datasets
import torchvision.transforms as transforms
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
dataset = datasets.ImageNet(root='path_to_ImageNet', split='val', transform=transform)
loader = DataLoader(dataset, batch_size=1)
def evaluate(model):
model.eval()
model = model.to('cuda')
total_correct = 0
total_samples = 0
with torch.no_grad():
for images, labels in loader:
images = images.to('cuda')
labels = labels.to('cuda')
outputs = model(images)
_, predicted = torch.max(outputs, 1)
total_samples += labels.size(0)
total_correct += (predicted == labels).sum().item()
accuracy = total_correct / total_samples
print(f'Accuracy: {accuracy}')
evaluate(quantized_model)
By following the above steps, you can quantize your model using PyTorch’s quantization functionality and evaluate the performance of the quantized model.