How to use autoencoders in Keras?
To use an autoencoder in Keras, you need to follow the steps below:
- Import the necessary libraries and modules.
from keras.models import Model
from keras.layers import Input, Dense
- Define the network architectures of the encoder and decoder.
input_img = Input(shape=(input_dim,))
encoded = Dense(encoding_dim, activation='relu')(input_img)
decoded = Dense(input_dim, activation='sigmoid')(encoded)
- Connect the encoder and decoder to form the entire autoencoder model.
autoencoder = Model(input_img, decoded)
- Compile the model with specified optimizer and loss function.
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
- Model training.
autoencoder.fit(x_train, x_train, epochs=50, batch_size=256, shuffle=True, validation_data=(x_test, x_test))
- Utilizing a pre-trained autoencoder model for data reconstruction or dimensionality reduction:
decoded_imgs = autoencoder.predict(x_test)
By following these steps, you can use an autoencoder in Keras for data reconstruction or dimensionality reduction.