How to use the reshape function in PyTorch?
In PyTorch, there are two ways to change the shape of a tensor using the reshape function.
- display()
import torch
# 创建一个大小为(2, 3)的张量
x = torch.tensor([[1, 2, 3], [4, 5, 6]])
# 使用view方法将张量的形状改变为(3, 2)
y = x.view(3, 2)
print(y)
Output: Result / Output / Outcome / Output result
tensor([[1, 2],
[3, 4],
[5, 6]])
- Reconfigure the shape.
import torch
# 创建一个大小为(2, 3)的张量
x = torch.tensor([[1, 2, 3], [4, 5, 6]])
# 使用reshape方法将张量的形状改变为(3, 2)
y = x.reshape(3, 2)
print(y)
Output: produce or generate
tensor([[1, 2],
[3, 4],
[5, 6]])
Both methods can be used to change the shape of a tensor, but the .view() method may sometimes return a view that shares storage, while the .reshape() method always returns a new tensor that does not share storage.