What are some common data flow operations in TensorFlow?
Common data flow operations in TensorFlow include:
- tf.constant: defining a constant tensor.
- tf.Variable: A tensor variable is defined.
- tf.placeholder: defines a placeholder tensor.
- tf.assign: assigning a value to a variable.
- tf.add: adding tensors together.
- tf.subtract: Subtracting tensors.
- tf.multiply: Multiplying tensors.
- tf.divide: dividing two tensors.
- tf.matmul: matrix multiplication.
- tf.reduce_sum: sum the tensor.
- tf.reduce_mean: Calculate the average value of a tensor.
- tf.nn.softmax: Perform a softmax operation on a tensor.
- tf.nn.relu: Applies the ReLU activation function to a tensor.
- tf.nn.sigmoid: applies the Sigmoid activation function to a tensor.
- tf.nn.dropout: applying the dropout operation to a tensor.
- tf.layers.dense: defines a fully connected layer.
- tf.nn.conv2d: defines a two-dimensional convolutional layer.
- tf.nn.max_pool: Defines a max pooling layer.
- tf.nn.rnn_cell: Defines a recurrent neural network unit.
- tf.nn.dynamic_rnn defines a dynamic RNN.