使用Docker Compose启动ELK(Elasticsearch Logstash Kibana)、Filebeat和nginx
首先
上一次,我在Docker上运行了nginx,并使用Logstash将访问日志保存到elasticsearch中。
现在,我已经改用Filebeat将日志发送到logstash。
我已经将源代码上传到 GitHub。
环境
-
- docker-compoase
-
- elasticsearch
-
- kibana
-
- Logstash
-
- Filebeat
- nginx
目录结构
└── es_logstash
└── es_d
├── docker-compose.yml
├── Dockerfile
└── config
└── elasticsearch.yml
└── kibana_d
├── docker-compose.yml
├── Dockerfile
└── config
└── kibana.yml
└── logstash_d
├── docker-compose.yml
├── Dockerfile
└── config
└── logstash.conf
└── beats_d
├── docker-compose.yml
├── Dockerfile
└── config
└── filebeat.conf
└── nginx_d
└── docker-compose.yml
version: '2'
services:
elasticsearch:
mem_limit: 1024m
build: .
container_name: es_c_el
image: es_i_el:1.0.5
volumes:
- ../data/es:/usr/share/elasticsearch/data
ports:
- 9200:9200
environment:
- ES_JAVA_OPTS=-Xms512m -Xmx512m
FROM docker.elastic.co/elasticsearch/elasticsearch:6.2.3
COPY ./config/elasticsearch.yml /usr/share/elasticsearch/config/elasticsearch.yml
# kuromojiをインストール
RUN elasticsearch-plugin install analysis-kuromoji
# RUN elasticsearch-plugin remove x-pack
http.host: 0.0.0.0
cluster.name: "docker-cluster"
discovery.type: single-node
### x-pack functions
xpack.security.enabled: false
# 無償利用は1クラスタまで
xpack.monitoring.enabled: true
xpack.graph.enabled: false
xpack.watcher.enabled: false
version: '2'
services:
kibana:
mem_limit: 512m
build: .
container_name: kibana_c_el
image: kibana_i_el:1.0.4
external_links:
- elasticsearch
ports:
- 5601:5601
networks:
- default
- es1_default
networks:
es1_default:
external:
name: es_d_default
FROM docker.elastic.co/kibana/kibana:6.2.3
COPY ./config/kibana.yml /opt/kibana/config/kibana.yml
# RUN kibana-plugin remove x-pack
server.name: kibana
server.host: "0"
elasticsearch.url: http://elasticsearch:9200
elasticsearch.username: elastic
elasticsearch.password: changeme
# xpack.monitoring.ui.container.elasticsearch.enabled: true
version: '2'
services:
logstash:
mem_limit: 512m
build: .
container_name: logstash_c_el
image: logstash_i_el:1.0.21
external_links:
- elasticsearch
ports:
- 5044:5044
networks:
- default
- es1_default
networks:
es1_default:
external:
name: es_d_default
FROM docker.elastic.co/logstash/logstash:6.2.3
ADD ./config/logstash.conf /usr/share/logstash/pipeline/logstash.conf
input {
beats {
port => 5044
}
}
filter {
grok {
match => { "message" => ["%{IPORHOST:[nginx][access][remote_ip]} - %{DATA:[nginx][access][user_name]} \[%{HTTPDATE:[nginx][access][time]}\] \"%{WORD:[nginx][access][method]} %{DATA:[nginx][access][url]} HTTP/%{NUMBER:[nginx][access][http_version]}\" %{NUMBER:[nginx][access][response_code]} %{NUMBER:[nginx][access][body_sent][bytes]} \"%{DATA:[nginx][access][referrer]}\" \"%{DATA:[nginx][access][agent]}\""] }
remove_field => "message"
}
mutate {
add_field => { "read_timestamp" => "%{@timestamp}" }
}
date {
match => [ "[nginx][access][time]", "dd/MMM/YYYY:H:m:s Z" ]
remove_field => "[nginx][access][time]"
}
useragent {
source => "[nginx][access][agent]"
target => "[nginx][access][user_agent]"
remove_field => "[nginx][access][agent]"
}
geoip {
source => "[nginx][access][remote_ip]"
target => "[nginx][access][geoip]"
}
}
output {
elasticsearch {
hosts => [ 'elasticsearch' ]
index => "access_log1"
}
}
version: '2'
services:
beats:
mem_limit: 512m
build: .
container_name: beats_c_el
image: beats_i_el:1.0.1
volumes:
- ../data/nginx:/var/log/nginx/
external_links:
- logstash
networks:
- default
- logstash1_default
networks:
logstash1_default:
external:
name: logstash_d_default
filebeat:
prospectors:
- paths:
- /var/log/nginx/access.log
input_type: log
output:
logstash:
hosts: ["logstash:5044"]
version: '2'
services:
web:
mem_limit: 512m
image: nginx:1.10
ports:
- "80:80"
volumes:
- ../data/nginx:/var/log/nginx
确认动作
启动容器
将容器按照顺序升级至elasticsearch、Logstash、kibana和nginx。
$ docker-compose up -d
访问nginx
$ curl http://localhost
access.log会被更新,然后通过Filebeat和Logstash传输到elasticsearch中储存。
弹性搜索
$ curl -XGET 'http://localhost:9200/_cat/count/access_log1'
将返回访问NGINX的次数。
基本上只需要一个选项就好:Kibana。
如果访问Kibana并执行GET /access_log1/_search?pretty=true,您就可以确认。
最后
Elasticsearch非常深。
Github (Github)